Lifetime measurements using the combined **RDT and Recoil-Shadow methods**

- Introduction Techniques
- Pb region E0's
- Simulations
- Furst tests

- University of Jyväskylä Paul Greenlees

Tagging Techniques Recoil, Recoil–Decay, Isomer

Transverse Geometry

0⁺ States and E0 Transitions

Goals:

- Locate 0⁺ states
- •Measure T_{1/2}
- •Extract monopole strength parameter, ρ^2 (need also branching ratios)

In case of K conversion:

$$\rho^2 = \frac{\ln 2}{(T_{1/2})_K \times \Omega_K}$$

 $\Omega_{\rm K}$ – electronic factor – analogous to ICC

 ρ^2 given in "milli-units" = 0.001 ρ^2 Fast transitions ~few hundred milli-units Typical ~10 milli-units

Two Level Model

Two mixed 0⁺ states, containing components of two shapes e.g. sph-def

Wave functions:

$$|\mathbf{0}_{i}^{*}\rangle = a|sph\rangle + b|def\rangle$$

 $|\mathbf{0}_{f}^{*}\rangle = -b|sph\rangle + a|def\rangle$

Monopole matrix element:

$$\left\langle 0_{f}^{*} \left| m(E0) \right| 0_{i}^{*} \right\rangle \approx abk\beta^{2}$$
$$k = \frac{3}{4\pi} ZeR^{2} \left[1 + \frac{4\pi^{2}}{3} \left(\frac{a_{0}}{R} \right)^{2} \right]$$

Monopole Strength: $\rho^2 \propto a^2(1-a^2)\beta^4$

N.B. Mixing: 50-50 - 100 60-40 - 96 80-20 - 64 90-10 - 36

Kantele, Handbook of Nuclear Spectroscopy: "... large values of ρ^2 imply the presence of sizeable deformation, as well as mixing of components with different $\langle r^2 \rangle$."

Level Sytematics for Even-Even Po Isotopes

Figure 4.6. Level scheme of "Po.

Figure 4.12. Experimental and unperturbed spherical and oblate deformed loval energies for ¹⁰⁰Po and ¹⁰⁴Po. The energies are normalized with respect to the experimental 0⁴; states.

K. HELARIUTTA THESIS (1999)

PERTURSED OF STATES FROM THEORY, OROS ETAL NPA 645, 107 (11)

Z= 82 E= 200 KeV Tyleo) - 800ps

TRANSITION ENERGY (keV)

Figure 6-8 Speeds of ED transitions with $p^2 = 0.010$. For comparison, the Weisskopf estimate half-life for E2 (A = 106) is also shown.

194Po a -tagged electrons

from 28Si+170Yb @ 143MeV

Z=82 E=200 kev K/L-5.5-6

Figure 6-7 Behaviour of K/L conversion ratios of E0 transitions as functions of Z for some energies. Except for very high-Z elements,, the energy dependence is rather weak.

A=194, VoC=1.5% T_{1/2}=1ns

