Mini–Workshop on Future In–Beam Conversion Electron Spectroscopy ISKP Bonn, 23./24. January 2003

Conversion Electron Spectroscopy

in the Second Minimum of Actinides

Introduction: double-humped fission barrier, fission isomers

- Experiments in the superdeformed 2. minimum: 240f Pu
 - $-\gamma$ –spectroscopy
 - conversion electron spectroscopy
- Predictions from phenomenological systematics
- Summary and Outlook

- magic neutron number N=146 , fission isomer: $t_{1/2} = 3.8$ ns
- pioneer experiment by Specht et al. (1972) : conversion electron spectroscopy after ²³⁸/_U(α,2n) ²⁴⁰/_{Pu} first identification of fission isomeric ground state rotational band

240f_{Pu} γ spectroscopy in

6 Ge-CLUSTER of German EUROBALL Collaboration: 42 detectors
 ²³⁸U(α, 2n) ^{240f}Pu (t_{1/2} =3.8 ns), 440 hrs. beamtime

delayed coincidence with fission fragments

single intensive γ- line (786.1 keV, 36.6 %) + weaker lines
regular rotational band structure: starting point for level scheme D. Pansegrau et al., Phys. Lett. B 484 (2000) 1

Mini Orange setup for conversion electron spectroscopy

Mini-Oranges:

- wedge-shaped permanent magnets around central Pb absorber
- toroidal magnetic field
- 2 configurations: $300 \le E_e(\text{keV}) \le 600$ $600 \le E_e(\text{keV}) \le 800$
- Si(Li)-detectors: $\Delta E \sim 3.1 \text{ keV}$
- total efficiency: 5.4 % (625 keV)

Experimental Setup for Conversion Electron Spectroscopy

Conversion electrons from ²⁴⁰^fPu

- from 2 series of experiments (ca. 570 hrs. beamtime): transmission optimized for 300-600 keV, 600-800 keV
- reaction: 238 U(α ,2n) 240f Pu E_{α} = 25 MeV
- electrons in delayed coincidence with fission fragments

 β bands in ^{236f,238(f)}U and ²⁴⁰Pu

238f_U

(8*)

16+1

J.M. Hoogduin et al. Phys. Lett. B 384 (1996) 43

2. minimum:

U. Goerlach et al., Phys. Rev. Lett. 48 (1982) 1160

• I_{β} - I_g - degeneracy removed

Combined analysis: γ's + conversion electrons

- all strong electron lines are E0 transitions
- conversion coefficient of 786.1 keV transition: E1
- first excited β -vibrational phonon: 769.9 keV
- connecting E0 transitions between excited rotational bands

Level scheme

0

2407Pu

Ŀ. Gassmann et al., Phys. Lett. B 497 (2001) 181

Moments of Inertia

(dynamical) moments of inertia:

Variation of moments of inertia:

- in β band from rigid rotor limit (low I) to value of gs band (high I)
- odd-even staggering in b band known from $K = 1^{-}$ bands in 1. minimum of actinides
- separately smooth behaviour for even/odd spins in b band

Systematics of collective excitations

VCS: 'Valence Correlation Scheme': Sum of valence nucleon pairs as ordering scheme

enables prediction of phonon energies in 2. minimum

• exp. determination of new magic numbers in 2. minimum

Extension of the Grodzins Systematics

- Grodzins (/Raman): $B(E2) E(2^+) = 2.6 Z^2 A^{2/3}$
- Actinide region: data plotted as function of quadrupole moment Q_0

• Study of a fission isomer with odd neutron number

- measurement of single particle energies

 γ – spectroscopy:

– measurement of Nilsson orbitals in odd fission isomer 237f Pu

→ MINIBALL (new Germanium spectrometer)

Conversion electrons:

- identification of β –vibrational bands in ^{237f}Pu
- → Mini Oranges

Improvement of models for description of superheavy elements

- main objective of MAFF project at new research reactor FRM-II

Expected Properties of ^{237f}Pu

Single Particle structure:

for neutrons at deformation of second well

Decay properties:

R. Vandenbosch et al., Phys. Rev. C8 (1973) 1080 M.H. Rafailovich et al., PRL 48 (1982) 982

Population of the Second Minimum

Excitation function: Reaction: $^{235}U(\alpha,2n)^{237}Pu$

Isomeric cross section:

R. Vandenbosch et al., Phys. Rev. C 8 (1973) 1080P.A. Russo et al., Phys. Rev. C 3 (1971) 1595S. de Barros et al., Z. Phys. A 323 (1986) 101

Summary/Outlook

Advantage of fission isomers:

- low angular momenta, few K mixing
- clear separation between vibrational and rotational excitations

Conversion electron spectroscopy indispensable tool:

– complementary to γ –ray spectroscopy: removal of ambiguities

• Superdeformed 2. minimum:

- identification of superdeformed collective bands
- determination of β phonon energy
- detailed level scheme
- predictive power for phonon energies in 2. minimum
- exp. determination of new magic numbers in 2. minimum
- extension of the Grodzins systematics

Outlook:

- identification of Nilsson single particle states candidate: 237f Pu with conversion electron, γ spectroscopy

–(in beam) identification of the fission isomer in 239 U

Collaboration:

LMU München <u>D. Gassmann</u> D. Habs M.J. Chromik P. Reiter H.J. Maier PGT

Univ. Bonn <u>E. Mergel</u> H. Hübel J. Domscheit A. Görgen S. Neumann A. Neusser G. Schönwasser

Inst. Nucl. Research, Debrecen/Ungarn

A. Krasznahorkay

CEA/Saclay

K. Hauschild

CSNSM Orsay

A. Lopez–Martens

MPI Heidelberg

- D. Pansegrau
- H. Bauer
- T. Härtlein
- F. Köck
- H. Scheit
- D. Schwalm